3.1025 \(\int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^2(c+d x) \, dx\)

Optimal. Leaf size=286 \[ \frac{\left (a^2 (3 A-2 C)+6 a b B+2 b^2 (3 A+C)\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 d \sqrt{a+b \cos (c+d x)}}-\frac{(3 a A-8 a C-6 b B) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{a (2 a B+3 A b) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}-\frac{b (3 A-2 C) \sin (c+d x) \sqrt{a+b \cos (c+d x)}}{3 d}+\frac{A \tan (c+d x) (a+b \cos (c+d x))^{3/2}}{d} \]

[Out]

-((3*a*A - 6*b*B - 8*a*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*d*Sqrt[(a + b*Cos
[c + d*x])/(a + b)]) + ((6*a*b*B + a^2*(3*A - 2*C) + 2*b^2*(3*A + C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*Ellip
ticF[(c + d*x)/2, (2*b)/(a + b)])/(3*d*Sqrt[a + b*Cos[c + d*x]]) + (a*(3*A*b + 2*a*B)*Sqrt[(a + b*Cos[c + d*x]
)/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]) - (b*(3*A - 2*C)*Sqrt[a + b
*Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (A*(a + b*Cos[c + d*x])^(3/2)*Tan[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 1.03435, antiderivative size = 286, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 10, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.233, Rules used = {3047, 3049, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ \frac{\left (a^2 (3 A-2 C)+6 a b B+2 b^2 (3 A+C)\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 d \sqrt{a+b \cos (c+d x)}}-\frac{(3 a A-8 a C-6 b B) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{a (2 a B+3 A b) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}-\frac{b (3 A-2 C) \sin (c+d x) \sqrt{a+b \cos (c+d x)}}{3 d}+\frac{A \tan (c+d x) (a+b \cos (c+d x))^{3/2}}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2,x]

[Out]

-((3*a*A - 6*b*B - 8*a*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*d*Sqrt[(a + b*Cos
[c + d*x])/(a + b)]) + ((6*a*b*B + a^2*(3*A - 2*C) + 2*b^2*(3*A + C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*Ellip
ticF[(c + d*x)/2, (2*b)/(a + b)])/(3*d*Sqrt[a + b*Cos[c + d*x]]) + (a*(3*A*b + 2*a*B)*Sqrt[(a + b*Cos[c + d*x]
)/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]) - (b*(3*A - 2*C)*Sqrt[a + b
*Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (A*(a + b*Cos[c + d*x])^(3/2)*Tan[c + d*x])/d

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(
c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c
*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*c*
d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)
))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3049

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x]
)^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2)
 - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx &=\frac{A (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{d}+\int \sqrt{a+b \cos (c+d x)} \left (\frac{1}{2} (3 A b+2 a B)+(b B+a C) \cos (c+d x)-\frac{1}{2} b (3 A-2 C) \cos ^2(c+d x)\right ) \sec (c+d x) \, dx\\ &=-\frac{b (3 A-2 C) \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{A (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{d}+\frac{2}{3} \int \frac{\left (\frac{3}{4} a (3 A b+2 a B)+\frac{1}{2} \left (3 A b^2+6 a b B+3 a^2 C+b^2 C\right ) \cos (c+d x)-\frac{1}{4} b (3 a A-6 b B-8 a C) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=-\frac{b (3 A-2 C) \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{A (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{d}-\frac{2 \int \frac{\left (-\frac{3}{4} a b (3 A b+2 a B)-\frac{1}{4} b \left (6 a b B+a^2 (3 A-2 C)+2 b^2 (3 A+C)\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{3 b}+\frac{1}{6} (-3 a A+6 b B+8 a C) \int \sqrt{a+b \cos (c+d x)} \, dx\\ &=-\frac{b (3 A-2 C) \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{A (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{d}+\frac{1}{2} (a (3 A b+2 a B)) \int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx-\frac{1}{6} \left (-6 a b B-a^2 (3 A-2 C)-2 b^2 (3 A+C)\right ) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx+\frac{\left ((-3 a A+6 b B+8 a C) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{6 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}\\ &=-\frac{(3 a A-6 b B-8 a C) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{b (3 A-2 C) \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{A (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{d}+\frac{\left (a (3 A b+2 a B) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt{a+b \cos (c+d x)}}-\frac{\left (\left (-6 a b B-a^2 (3 A-2 C)-2 b^2 (3 A+C)\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{6 \sqrt{a+b \cos (c+d x)}}\\ &=-\frac{(3 a A-6 b B-8 a C) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{\left (6 a b B+a^2 (3 A-2 C)+2 b^2 (3 A+C)\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 d \sqrt{a+b \cos (c+d x)}}+\frac{a (3 A b+2 a B) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}-\frac{b (3 A-2 C) \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{A (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{d}\\ \end{align*}

Mathematica [C]  time = 4.03069, size = 434, normalized size = 1.52 \[ \frac{\frac{8 \left (3 a^2 C+6 a b B+3 A b^2+b^2 C\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}+\frac{2 \left (12 a^2 B+a b (15 A+8 C)+6 b^2 B\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}+\frac{2 i \csc (c+d x) (-3 a A+8 a C+6 b B) \sqrt{-\frac{b (\cos (c+d x)-1)}{a+b}} \sqrt{\frac{b (\cos (c+d x)+1)}{b-a}} \left (b \left (b \Pi \left (\frac{a+b}{a};i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )-2 a F\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )}{a b \sqrt{-\frac{1}{a+b}}}+4 \tan (c+d x) \sqrt{a+b \cos (c+d x)} (3 a A+2 b C \cos (c+d x))}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2,x]

[Out]

((8*(3*A*b^2 + 6*a*b*B + 3*a^2*C + b^2*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a +
 b)])/Sqrt[a + b*Cos[c + d*x]] + (2*(12*a^2*B + 6*b^2*B + a*b*(15*A + 8*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]
*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + ((2*I)*(-3*a*A + 6*b*B + 8*a*C)*Sqrt[-(
(b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I
*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(
a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1
)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*Sqrt[-(a + b)^(-1)]) + 4*Sqrt[a + b*Cos[c + d*x]]*(3*a*
A + 2*b*C*Cos[c + d*x])*Tan[c + d*x])/(12*d)

________________________________________________________________________________________

Maple [B]  time = 1.118, size = 1635, normalized size = 5.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2,x)

[Out]

-1/3*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-16*b^2*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2
*c)^6+(12*A*a*b+8*C*a*b+16*C*b^2)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-6*A*a^2-6*A*a*b-4*C*a*b-4*C*b^2)*s
in(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+2*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(9*A*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a*b-3*A*EllipticF(cos(1/2*d*x+1/2*c),(-2*
b/(a-b))^(1/2))*a^2-6*A*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2+3*A*EllipticE(cos(1/2*d*x+1/2*c),
(-2*b/(a-b))^(1/2))*a^2-3*A*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b+6*B*EllipticPi(cos(1/2*d*x+1/
2*c),2,(-2*b/(a-b))^(1/2))*a^2-6*B*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-6*B*EllipticE(cos(1/2*
d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b+6*B*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2+2*C*EllipticF(cos(
1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2-2*C*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2-8*C*EllipticE(
cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+8*C*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b)*sin(1/2*d
*x+1/2*c)^2-9*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(co
s(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a*b+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(
a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+6*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-
2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-3*A*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(
a-b))^(1/2))*a^2+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Elliptic
E(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2
+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2+6*a*b*B*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+6*B*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-
2*b/(a-b))^(1/2))*a*b-6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Ell
ipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2-2*a^2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x
+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+2*b^2*C*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+8*C*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),
(-2*b/(a-b))^(1/2))*a^2-8*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*E
llipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1
/2)/(2*cos(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )}{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^2, x)